114 research outputs found

    Changing Snow Seasonality in the Highlands of Kyrgyzstan

    Get PDF
    Few studies have examined changing snow seasonality in Central Asia. Here, we analyzed changes in the seasonality of snow cover across Kyrgyzstan (KGZ) over 14 years from 2002/03–2015/16 using the most recent version (v006) of MODIS Terra and Aqua 8 day snow cover composites (MOD10A2/MYD10A2). We focused on three metrics of snow seasonality—first date of snow, last date of snow, and duration of snow season—and used nonparametric trends tests to assess the significance and direction of trends. We evaluated trends at three administration scales and across elevation. We used two techniques to assure that our identification of significant trends was not resulting from random spatial variation. First, we report only significant trends (positive or negative) that are at least twice as prevalent as the converse trends. Second, we use a two-stage analysis at the national scale to identify asymmetric directional changes in snow seasonality. Results show that more territory has been experiencing earlier onset of snow than earlier snowmelt, and roughly equivalent areas have been experiencing longer and shorter duration of snow seasons in the past 14 years. The changes are not uniform across KGZ, with significant shifts toward earlier snow arrival in western and central KGZ and significant shifts toward earlier snowmelt in eastern KGZ. The duration of the snow season has significantly shortened in western and eastern KGZ and significantly lengthened in northern and southwestern KGZ. Duration is significantly longer where the snow onset was significantly earlier or the snowmelt significantly later. There is a general trend of significantly earlier snowmelt below 3400 m and the area of earlier snowmelt is 15 times greater in eastern than western districts. Significant trends in the Aqua product were less prevalent than in the Terra product, but the general trend toward earlier snowmelt was also evident in Aqua data

    Changing Snow Seasonality in the Highlands of Kyrgyzstan

    Get PDF
    Few studies have examined changing snow seasonality in Central Asia. Here, we analyzed changes in the seasonality of snow cover across Kyrgyzstan (KGZ) over 14 years from 2002/03–2015/16 using the most recent version (v006) of MODIS Terra and Aqua 8 day snow cover composites (MOD10A2/MYD10A2).We focused on three metrics of snow seasonality—first date of snow, last date of snow, and duration of snow season—and used nonparametric trends tests to assess the significance and direction of trends. We evaluated trends at three administration scales and across elevation. We used two techniques to assure that our identification of significant trends was not resulting from random spatial variation. First, we report only significant trends (positive or negative) that are at least twice as prevalent as the converse trends. Second, we use a two-stage analysis at the national scale to identify asymmetric directional changes in snow seasonality. Results show that more territory has been experiencing earlier onset of snow than earlier snowmelt, and roughly equivalent areas have been experiencing longer and shorter duration of snow seasons in the past 14 years. The changes are not uniform across KGZ, with significant shifts toward earlier snow arrival in western and central KGZ and significant shifts toward earlier snowmelt in eastern KGZ. The duration of the snow season has significantly shortened in western and eastern KGZ and significantly lengthened in northern and southwestern KGZ. Duration is significantly longer where the snow onset was significantly earlier or the snowmelt significantly later. There is a general trend of significantly earlier snowmelt below 3400m and the area of earlier snowmelt is 15 times greater in eastern than western districts. Significant trends in the Aqua product were less prevalent than in the Terra product, but the general trend toward earlier snowmelt was also evident in Aqua data

    A Comparison of Multiple Datasets for Monitoring Thermal Time in Urban Areas over the U.S. Upper Midwest

    Get PDF
    Traditional studies of urban climate used air temperature observations from local urban/rural weather stations in order to analyze the general pattern of higher temperatures in urban areas compared with corresponding rural regions, also known as the Urban Heat Island (UHI) effect. More recently, satellite remote sensing datasets of land surface temperature have been exploited to monitor UHIs. While closely linked, air temperature and land surface temperature (LST) observations do not measure the same variables. Here we analyze land surface temperature vs.air temperature-based characterization and seasonality of the UHI and the surface UHI (SUHI) from 2003 to 2012 over the Upper Midwest region of the United States using LST from MODIS, and air temperature from the Daymet modeled gridded daily air temperature dataset, and compare both datasets to ground station data from first-order weather stations of the Global Historical Climatology Network (GHCN) located in eleven urban areas spanning our study region. We first convert the temperature data to metrics of nocturnal, diurnal, and daily thermal time and their annual accumulations to draw conclusions on nighttime vs. daytime and seasonal dynamics of the UHI. In general, the MODIS LST-derived results are able to capture urban–rural differences in daytime, nighttime, and daily thermal time while the Daymet air temperature-derived results show very little urban–rural differences in thermal time. Compared to the GHCN ground station air temperature-derived observations, MODIS LST-derived results are closer in terms of urban–rural differences in nighttime thermal time, while the results from Daymet are closer to the observations from GHCN during the daytime. We also found differences in the seasonal dynamics of UHIs measured by air temperature observations and SUHIs measured by LST observations

    Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin

    Get PDF
    AbstractStudy Region: Brahmaputra River basin in South Asia.Study Focus: The Soil and Water Assessment Tool was used to evaluate sensitivities and patterns in freshwater availability due to projected climate and land use changes in the Brahmaputra basin. The daily observed discharge at Bahadurabad station in Bangladesh was used to calibrate and validate the model and analyze uncertainties with a sequential uncertainty fitting algorithm. The sensitivities and impacts of projected climate and land use changes on basin hydrological components were simulated for the A1B and A2 scenarios and analyzed relative to a baseline scenario of 1988–2004.New hydrological insights for the region: Basin average annual ET was found to be sensitive to changes in CO2 concentration and temperature, while total water yield, streamflow, and groundwater recharge were sensitive to changes in precipitation. The basin hydrological components were predicted to increase with seasonal variability in response to climate and land use change scenarios. Strong increasing trends were predicted for total water yield, streamflow, and groundwater recharge, indicating exacerbation of flooding potential during August–October, but strong decreasing trends were predicted, indicating exacerbation of drought potential during May–July of the 21st century. The model has potential to facilitate strategic decision making through scenario generation integrating climate change adaptation and hazard mitigation policies to ensure optimized allocation of water resources under a variable and changing climate

    Land Surface Phenology and Seasonality Using Cool Earthlight in Croplands of Eastern Africa and the Linkages to Crop Production

    Get PDF
    Across Eastern Africa, croplands cover 45 million ha. The regional economy is heavily dependent on small holder traditional rain-fed peasant agriculture (up to 90%), which is vulnerable to extreme weather events such as drought and floods that leads to food insecurity. Agricultural production in the region is moisture limited. Weather station data are scarce and access is limited, while optical satellite data are obscured by heavy clouds limiting their value to study cropland dynamics. Here, we characterized cropland dynamics in Eastern Africa for 2003–2015 using precipitation data from Tropical Rainfall Measuring Mission (TRMM) and a passive microwave dataset of land surface variables that blends data from the Advanced Microwave Scanning Radiometer (AMSR) on the Earth Observing System (AMSR-E) from 2002 to 2011 with data from AMSR2 from 2012 to 2015 with a Chinese microwave radiometer to fill the gap. These time series were analyzed in terms of either cumulative precipitable water vapor-days (CVDs) or cumulative actual evapotranspiration-days (CETaDs), rather than as days of the year. Time series of the land surface variables displayed unimodal seasonality at study sites in Ethiopia and South Sudan, in contrast to bimodality at sites in Tanzania. Interannual moisture variability was at its highest at the beginning of the growing season affecting planting times of crops, while it was lowest at the time of peak moisture. Actual evapotranspiration (ETa) from the simple surface energy balance (SSEB) model was sensitive to track both unimodal and bimodal rainfall patterns. ETa as a function of CETaD was better fitted by a quadratic model (r2 \u3e 0.8) than precipitable water vapor was by CVDs (r2 \u3e 0.6). Moisture time to peak (MTP) for the land surface variables showed strong, logical correspondence among variables (r2 \u3e 0.73). Land surface parameters responded to El Niño-Southern Oscillation and the Indian Ocean Dipole forcings. Area under the curve of the diel difference in vegetation optical depth showed correspondence to crop production and yield data collected by local offices, but not to the data reported at the national scale. A long-term seasonal Mann–Kendall rainfall trend showed a significant decrease for Ethiopia, while the decrement was not significant for Tanzania. While there is significant potential for passive microwave data to augment cropland status and food security monitoring efforts in the region, more research is needed before these data can be used in an operational environmen

    Impacts of Thermal Time on Land Surface Phenology in Urban Areas

    Get PDF
    Urban areas alter local atmospheric conditions by modifying surface albedo and consequently the surface radiation and energy balances, releasing waste heat from anthropogenic uses, and increasing atmospheric aerosols, all of which combine to increase temperatures in cities, especially overnight, compared with surrounding rural areas, resulting in a phenomenon called the “urban heat island effect. Recent rapid urbanization of the planet has generated calls for remote sensing research related to the impacts of urban areas and urbanization on the natural environment. Spatially extensive, high spatial resolution data products are needed to capture phenological patterns in regions with heterogeneous land cover and external drivers such as cities, which are comprised of a mixture of land cover/land uses and experience microclimatic influences. Here we use the 30 m normalized difference vegetation index (NDVI) product from the Web-Enabled Landsat Data (WELD) project to analyze the impacts of urban areas and their surface heat islands on the seasonal development of the vegetated land surface along an urban–rural gradient for 19 cities located in the Upper Midwest of the United States. We fit NDVI observations from 2003–2012 as a quadratic function of thermal time as accumulated growing degree-days (AGDD) calculated from the Moderate-resolution Imaging Spectroradiometer (MODIS) 1 km land surface temperature product to model decadal land surface phenology metrics at 30 m spatial resolution. In general, duration of growing season (measured in AGDD) in green core areas is equivalent to duration of growing season in urban extent areas, but significantly longer than duration of growing season in areas outside of the urban extent. We found an exponential relationship in the difference of duration of growing season between urban and surrounding rural areas as a function of distance from urban core areas for perennial vegetation, with an average magnitude of 669 AGDD (base 0°C) and the influence of urban areas extending greater than 11 km from urban core areas. At the regional scale, relative change in duration of growing season does not appear to be significantly related to total area of urban extent, population, or latitude. The distance and magnitude that urban areas exert influence on vegetation in and near cities is relatively uniform

    How Much Variation in Land Surface Phenology can Climate Oscillation Modes Explain at the Scale of Mountain Pastures in Kyrgyzstan?

    Get PDF
    Climate oscillation modes can shape weather across the globe due to atmospheric teleconnections. We built on the findings of a recent study to assess whether the impacts of teleconnections are detectable and significant in the early season dynamics of highland pastures across five rayons in Kyrgyzstan. Specifically, since land surface phenology (LSP) has already shown to be influenced by snow cover seasonality and terrain, we investigated here how much more explanatory and predictive power information about climatic oscillation modes might add to explain variation in LSP. We focused on seasonal values of five climate oscillation indices that influence vegetation dynamics in Central Asia. We characterized the phenology in highland pastures with metrics derived from LSP modeling using Landsat NDVI time series together with MODIS land surface temperature (LST) data: Peak Height (PH), the maximum modeled NDVI and Thermal Time to Peak (TTP), the quantity of accumulated growing degree-days based on LST required to reach PH. Next, we calculated two metrics of snow cover seasonality from MODIS snow cover composites: last date of snow (LDoS), and the number of snow covered dates (SCD). For terrain features, we derived elevation, slope, and TRASP index as linearization of aspect. First, we used Spearman’s rank correlation to assess the geographical differentiation of land surface phenology metrics responses to environmental variables. PH showed weak correlations with TTP (positive in western but negative in eastern rayons), and moderate relationships with LDoS and SCD only in one northeastern rayon. Slope was weakly related to PH, while TRASP showed a consistent moderate negative correlation with PH. A significant but weak negative correlation was found between PH and SCAND JJA, and a significant weak positive correlation with MEI MAM. TTP showed consistently strong negative relationships with LDoS, SCD, and elevation. Very weak positive correlations with TTP were found for EAWR DJF, AMO DJF, and MEI DJF in western rayons only. Second, we used Partial Least Squares regression to investigate the role of oscillation modes altogether. PLS modelling of TTP showed that thermal time accumulation could be explained mostly by elevation and snow cover metrics, leading to reduced models explaining 55 to 70% of observed variation in TTP. Variable selection indicated that NAO JJA, AMO JJA and SCAND MAM had significant relationships with TTP, but their input of predictive power was neglible. PLS models were able to explain up to 29% of variability in PH. SCAND JJA and MEI MAM were shown to be significant predictors, but adding them into models did not influence modeling performance. We concluded the impacts of climate oscillation anomalies were not detectable or significant in mountain pastures using LSP metrics at fine spatial resolution. Rather, at a 30m resolution, the indirect effects of seasonal climatic oscillations are overridden by terrain influences (mostly elevation) and snow cover timing. Whether climate oscillation mode indices can provide some new and useful information about growing season conditions remains a provocative question, particularly in light of the multiple environmental challenges facing the agropastoralism livelihood in montane Central Asia

    Characterizing Cropland Phenology in Major Grain Production Areas of Russia, Ukraine, and Kazakhstan by the Synergistic Use of Passive Microwave and Visible to Near Infrared Data

    Get PDF
    We demonstrate the synergistic use of surface air temperature retrieved from AMSR-E (Advanced Microwave Scanning Radiometer on Earth observing satellite) and two vegetation indices (VIs) from the shorter wavelengths of MODIS (MODerate resolution Imaging Spectroradiometer) to characterize cropland phenology in the major grain production areas of Northern Eurasia from 2003–2010. We selected 49 AMSR-E pixels across Ukraine, Russia, and Kazakhstan, based on MODIS land cover percentage data. AMSR-E air temperature growing degree-days (GDD) captures the weekly, monthly, and seasonal oscillations, and well correlated with station GDD. A convex quadratic (CxQ) model that linked thermal time measured as growing degree-days to accumulated growing degree-days (AGDD) was fitted to each pixel’s time series yielding high coefficients of determination (0.88 ≤ r2 ≤ 0.98). Deviations of observed GDD from the CxQ model predicted GDD by site corresponded to peak VI for negative residuals (period of higher latent heat flux) and low VI at beginning and end of growing season for positive residuals (periods of higher sensible heat flux). Modeled thermal time to peak, i.e., AGDD at peak GDD, showed a strong inverse linear trend with respect to latitude with r2 of 0.92 for Russia and Kazakhstan and 0.81 for Ukraine. MODIS VIs tracked similar seasonal responses in time and space and were highly correlated across the growing season with r2 \u3e 0.95. Sites at lower latitude (≤49°N) that grow winter and spring grains showed either a bimodal growing season or a shorter unimodal winter growing season with substantial inter-annual variability, whereas sites at higher latitude (≥56°N) where spring grains are cultivated exhibited shorter, unimodal growing seasons. Sites between these extremes exhibited longer unimodal growing seasons. At some sites there were shifts between unimodal and bimodal patterns over the study period. Regional heat waves that devastated grain production in 2007 in Ukraine and in 2010 in Russia and Kazakhstan appear clearly anomalous. Microwave based surface air temperature data holds great promise to extend to parts of the planet where the land surface is frequently obscured by clouds, smoke, or aerosols, and where routine meteorological observations are sparse or absent

    Comparing Passive Microwave with Visible-To-Near-Infrared Phenometrics in Croplands of Northern Eurasia

    Get PDF
    Planting and harvesting times drive cropland phenology. There are few datasets that derive explicit phenological metrics, and these datasets use the visible to near infrared (VNIR) spectrum. Many different methods have been used to derive phenometrics such as Start of Season (SOS) and End of Season (EOS), leading to differing results. This discrepancy is partly due to spatial and temporal compositing of the VNIR satellite data to minimize data gaps resulting from cloud cover, atmospheric aerosols, and solar illumination constraints. Phenometrics derived from the downward Convex Quadratic model (CxQ) include Peak Height (PH) and Thermal Time to Peak (TTP), which are more consistent than SOS and EOS because they are minimally affected by snow and frost and other non-vegetation related issues. Here, we have determined PH using the vegetation optical depth (VOD) in three microwave frequencies (6.925, 10.65 and 18.7 GHz) and accumulated growing degree-days derived from AMSR-E (Advanced Microwave Scanning Radiometer on EOS) data at a spatial resolution of 25 km. We focus on 50 AMSR-E cropland pixels in the major grain production areas of Northern Eurasia (Ukraine, southwestern Russia, and northern Kazakhstan) for 2003–2010. We compared the land surface phenologies of AMSR-E VOD and MODIS NDVI data. VOD time series tracked cropland seasonal dynamics similar to that recorded by the NDVI. The coefficients of determination for the CxQ model fit of the NDVI data were high for all sites (0.78 \u3c R2 \u3c 0.99). The 10.65 GHz VOD (VOD1065GHz) achieved the best linear regression fit (R2 = 0.84) with lowest standard error (SEE = 0.128); it is therefore recommended for microwave VOD studies of cropland land surface phenology. Based on an Analysis of Covariance (ANCOVA) analysis, the slopes from the linear regression fit were not significantly different by microwave frequency, whereas the intercepts were significantly different, given the different magnitudes of the VODs. PHs for NDVI and VOD were highly correlated. Despite their strong correspondence, there was generally a lag of AMSR-E PH VOD10.65GHz by about two weeks compared to MODIS peak greenness. To evaluate the utility of the PH determination based on maximum value, we correlated the CxQ derived and maximum value determined PHs of NDVI and found that they were highly correlated with R2 of 0.87, but with a one-week bias. Considering the one-week bias between the two methods, we find that PH of VOD10.65GHz lags PH of NDVI by three weeks. We conclude, therefore, that maximum-value based PH of VOD can be a complementary phenometric for the CxQ model derived PH NDVI, especially in cloud and aerosol obscured regions of the world

    Canopy Height Estimation by Characterizing Waveform LiDAR Geometry Based on Shape-Distance Metric

    Get PDF
    There have been few approaches developed for the estimation of height using waveform LiDAR data. Unlike any existing methods, we illustrate how the new Moment Distance (MD) framework can characterize the canopy height based on the geometry and return power of the LiDAR waveform without having to go through curve modeling processes. Our approach offers the possibilities of using the raw waveform data to capture vital information from the variety of complex waveform shapes in LiDAR. We assess the relationship of the MD metrics to the key waveform landmarks—such as locations of peaks, power of returns, canopy heights, and height metrics—using synthetic data and real Laser Vegetation Imaging Sensor (LVIS) data. In order to verify the utility of the new approach, we use field measurements obtained through the DESDynI (Deformation, Ecosystem Structure and Dynamics of Ice) campaign. Our results reveal that the MDI can capture temporal dynamics of canopy and segregate generations of stands based on curve shapes. The method satisfactorily estimates the canopy height using the synthetic (r 2 = 0.40) and the LVIS dataset (r 2 = 0.74). The MDI is also comparable with existing RH75 (relative height at 75%) and RH50 (relative height at 50%) height metrics. Furthermore, the MDI shows better correlations with ground-based measurements than relative height metrics. The MDI performs well at any type of waveform shape. This opens the possibility of looking more closely at single-peaked waveforms that usually carries complex extremes
    • …
    corecore